Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 42(1): 132-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37231263

RESUMO

We present avidity sequencing, a sequencing chemistry that separately optimizes the processes of stepping along a DNA template and that of identifying each nucleotide within the template. Nucleotide identification uses multivalent nucleotide ligands on dye-labeled cores to form polymerase-polymer-nucleotide complexes bound to clonal copies of DNA targets. These polymer-nucleotide substrates, termed avidites, decrease the required concentration of reporting nucleotides from micromolar to nanomolar and yield negligible dissociation rates. Avidity sequencing achieves high accuracy, with 96.2% and 85.4% of base calls having an average of one error per 1,000 and 10,000 base pairs, respectively. We show that the average error rate of avidity sequencing remained stable following a long homopolymer.


Assuntos
DNA , Nucleotídeos , Nucleotídeos/genética , Nucleotídeos/química , DNA/genética , DNA/química , Replicação do DNA , Pareamento de Bases , Polímeros
2.
Biophys J ; 94(1): 159-67, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17827233

RESUMO

During the assembly of many viruses, a powerful molecular motor compacts the genome into a preassembled capsid. Here, we present measurements of viral DNA packaging in bacteriophage phi29 using an improved optical tweezers method that allows DNA translocation to be measured from initiation to completion. This method allowed us to study the previously uncharacterized early stages of packaging and facilitated more accurate measurement of the length of DNA packaged. We measured the motor velocity versus load at near-zero filling and developed a ramped DNA stretching technique that allowed us to measure the velocity versus capsid filling at near-zero load. These measurements reveal that the motor can generate significantly higher velocities and forces than detected previously. Toward the end of packaging, the internal force resisting DNA confinement rises steeply, consistent with the trend predicted by many theoretical models. However, the force rises to a higher magnitude, particularly during the early stages of packaging, than predicted by models that assume coaxial inverse spooling of the DNA. This finding suggests that the DNA is not arranged in that conformation during the early stages of packaging and indicates that internal force is available to drive complete genome ejection in vitro. The maximum force exceeds 100 pN, which is about one-half that predicted to rupture the capsid shell.


Assuntos
Fagos Bacilares/fisiologia , Empacotamento do DNA/fisiologia , DNA/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares/fisiologia , Simulação por Computador , Movimento (Física) , Estresse Mecânico
3.
J Mol Biol ; 373(5): 1113-22, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17919653

RESUMO

Molecular motors drive genome packaging into preformed procapsids in many double-stranded (ds)DNA viruses. Here, we present optical tweezers measurements of single DNA molecule packaging in bacteriophage lambda. DNA-gpA-gpNu1 complexes were assembled with recombinant gpA and gpNu1 proteins and tethered to microspheres, and procapsids were attached to separate microspheres. DNA binding and initiation of packaging were observed within a few seconds of bringing these microspheres into proximity in the presence of ATP. The motor was observed to generate greater than 50 picoNewtons (pN) of force, in the same range as observed with bacteriophage phi29, suggesting that high force generation is a common property of viral packaging motors. However, at low capsid filling the packaging rate averaged approximately 600 bp/s, which is 3.5-fold higher than phi29, and the motor processivity was also threefold higher, with less than one slip per genome length translocated. The packaging rate slowed significantly with increasing capsid filling, indicating a buildup of internal force reaching 14 pN at 86% packaging, in good agreement with the force driving DNA ejection measured in osmotic pressure experiments and calculated theoretically. Taken together, these experiments show that the internal force that builds during packaging is largely available to drive subsequent DNA ejection. In addition, we observed an 80 bp/s dip in the average packaging rate at 30% packaging, suggesting that procapsid expansion occurs at this point following the buildup of an average of 4 pN of internal force. In experiments with a DNA construct longer than the wild-type genome, a sudden acceleration in packaging rate was observed above 90% packaging, and much greater than 100% of the genome length was translocated, suggesting that internal force can rupture the immature procapsid, which lacks an accessory protein (gpD).


Assuntos
Bacteriófago lambda/genética , Empacotamento do DNA , Trifosfato de Adenosina , Capsídeo , Genoma Viral , Cinética , Proteínas Motores Moleculares/fisiologia
4.
Proc Natl Acad Sci U S A ; 104(43): 16868-73, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17942694

RESUMO

Terminase enzyme complexes, which facilitate ATP-driven DNA packaging in phages and in many eukaryotic viruses, constitute a wide and potentially diverse family of molecular motors about which little dynamic or mechanistic information is available. Here we report optical tweezers measurements of single DNA molecule packaging dynamics in phage T4, a large, tailed Escherichia coli virus that is an important model system in molecular biology. We show that a complex is formed between the empty prohead and the large terminase protein (gp17) that can capture and begin packaging a target DNA molecule within a few seconds, thus demonstrating a distinct viral assembly pathway. The motor generates forces >60 pN, similar to those measured with phage phi29, suggesting that high force generation is a common property of viral DNA packaging motors. However, the DNA translocation rate for T4 was strikingly higher than that for phi29, averaging approximately 700 bp/s and ranging up to approximately 2,000 bp/s, consistent with packaging by phage T4 of an enormous, 171-kb genome in <10 min during viral infection and implying high ATP turnover rates of >300 s(-1). The motor velocity decreased with applied load but averaged 320 bp/s at 45 pN, indicating very high power generation. Interestingly, the motor also exhibited large dynamic changes in velocity, suggesting that it can assume multiple active conformational states gearing different translocation rates. This capability, in addition to the reversible pausing and slipping capabilities that were observed, may allow phage T4 to coordinate DNA packaging with other ongoing processes, including viral DNA transcription, recombination, and repair.


Assuntos
Bacteriófago T4/metabolismo , Empacotamento do DNA , DNA Viral/metabolismo , Proteínas Motores Moleculares/metabolismo , Fenômenos Biomecânicos , Fatores de Tempo , Proteínas Virais/metabolismo
5.
Proc Natl Acad Sci U S A ; 104(27): 11245-50, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17556543

RESUMO

In many viruses, DNA is confined at such high density that its bending rigidity and electrostatic self-repulsion present a strong energy barrier in viral assembly. Therefore, a powerful molecular motor is needed to package the DNA into the viral capsid. Here, we investigate the role of electrostatic repulsion on single DNA packaging dynamics in bacteriophage phi 29 via optical tweezers measurements. We show that ionic screening strongly affects the packing forces, confirming the importance of electrostatic repulsion. Separately, we find that ions affect the motor function. We separate these effects through constant force measurements and velocity versus load measurements at both low and high capsid filling. Regarding motor function, we find that eliminating free Mg(2+) blocks initiation of packaging. In contrast, Na(+) is not required, but it increases the motor velocity by up to 50% at low load. Regarding internal resistance, we find that the internal force was lowest when Mg(2+) was the dominant ion or with the addition of 1 mM Co(3+). Forces resisting DNA confinement were up to approximately 80% higher with Na(+) as the dominant counterion, and only approximately 90% of the genome length could be packaged in this condition. The observed trend of the packing forces is in accord with that predicted by DNA charge-screening theory. However, the forces are up to six times higher than predicted by models that assume coaxial spooling of the DNA and interaction potentials derived from DNA condensation experiments. The forces are also severalfold higher than ejection forces measured with bacteriophage lambda.


Assuntos
Fagos Bacilares/química , Fagos Bacilares/genética , DNA Viral/fisiologia , Montagem de Vírus/fisiologia , Fagos Bacilares/fisiologia , Capsídeo/química , Capsídeo/fisiologia , Cátions Bivalentes/química , Cátions Monovalentes/química , Cobalto/química , Cobalto/fisiologia , DNA Viral/química , Magnésio/química , Magnésio/fisiologia , Pinças Ópticas , Valor Preditivo dos Testes , Sódio/química , Sódio/fisiologia , Eletricidade Estática
6.
Biophys J ; 91(11): 4253-7, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16963512

RESUMO

Optical tweezers have broad applications in studies of structures and processes in molecular and cellular biophysics. Use of optical tweezers for quantitative molecular-scale measurement requires careful calibration in physical units. Here we show that DNA molecules may be used as metrology standards for force and length measurements. Analysis of DNA molecules of two specific lengths allows simultaneous determination of all essential measurement parameters. We validate this biological-calibration method experimentally and with simulated data, and show that precisions in determining length scale factor ( approximately 0.2%), length offset ( approximately 0.03%), force scale factor ( approximately 2%), and compliance of the traps ( approximately 3%) are limited only by current measurement variation, much of which arises from polydispersity of the microspheres ( approximately 2%). We find this procedure to be simpler and more convenient than previous methods, and suggest that it provides an easily replicated standard that can insure uniformity of measurements made in different laboratories.


Assuntos
Biofísica/instrumentação , Biofísica/métodos , DNA/química , Micromanipulação/métodos , Pinças Ópticas , Calibragem , Simulação por Computador , Microesferas , Modelos Estatísticos , Modelos Teóricos , Conformação Proteica , Projetos de Pesquisa , Temperatura , Água/química
7.
Nucleic Acids Res ; 34(2): e15, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16452295

RESUMO

Mechanical manipulation of single DNA molecules can provide novel information about DNA properties and protein-DNA interactions. Here we describe and characterize a useful method for manipulating desired DNA sequences from any organism with optical tweezers. Molecules are produced from either genomic or cloned DNA by PCR using labeled primers and are tethered between two optically trapped microspheres. We demonstrate that human, insect, plant, bacterial and viral sequences ranging from approximately 10 to 40 kilobasepairs can be manipulated. Force-extension measurements show that these constructs exhibit uniform elastic properties in accord with the expected contour lengths for the targeted sequences. Detailed protocols for preparing and manipulating these molecules are presented, and tethering efficiency is characterized as a function of DNA concentration, ionic strength and pH. Attachment strength is characterized by measuring the unbinding time as a function of applied force. An alternative stronger attachment method using an amino-carboxyl linkage, which allows for reliable DNA overstretching, is also described.


Assuntos
DNA/química , Sequência de Bases , DNA/isolamento & purificação , Elasticidade , Técnicas Genéticas , Humanos , Lasers , Técnicas Analíticas Microfluídicas , Microesferas , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...